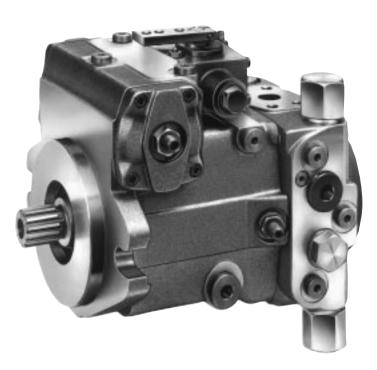
Hydrostatic Pump Repair www.hydrostaticpumprepair.net Phone: 800-361-0028 Email: sales@hydrostatic-transmission.com

MANNESMANN REXROTH

Variable Displacement Pump AA4VG Series 3, for Closed Circuits Axial Piston, Swashplate Design


Size 28...250

Nominal Pressure 5800 psi Peak Pressure 6500 psi

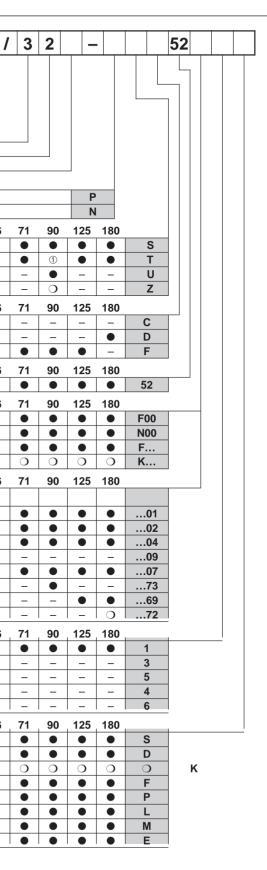
RA 92003/01.96

Replaces: 08.95

See Appendix for Sizes 28 and 250.

The AA4VG is a swashplate design, variable displacement axial piston pump specifically designed for hydrostatic closed circuit transmissions. The design incorporates a charge pump, charge pressure relief valve, two combination high-pressure relief/anti-cavitation check valves, and integral Pressure Cut-Off.

Flow is proportional to drive speed and pump displacement and is infinitely adjustable. It increases with increasing swashplate angle from zero to its maximum value. Swiveling the pump over center smoothly reverses the direction of oil flow.


A complete range of modular control and regulating devices is available.

The pump is available with a full range of through drive options and tandem pump configurations.

National FLUID POWER 1

Variable Displacement Pump AA4VG, Series 3			
Ordering Code			
Hydraulic Fluid		AA4V G	
Petroleum Oil (For operation with other fluids, consult a Rexroth Application Engineer)		xial Piston Unit	
Axial Piston Unit		peration	
Variable swashplate design. Nominal pressure 5800 psi; peak pressure 650		isplacement	
		ontrol & Options	
Mode of Operation		egulating Cartridge	
Pump in closed circuit		esign Series	
Size		dex	
≈ Displacement $V_{g max}$ (cm ³) 28 4	40 56 71 90 125 180 250 Di	irection of Rotation	
Size 28, see Appendix	▲ Se	eals	
Size 250, see Appendix	1	NBR	
Control Options 4	40 56 71 90 125 180	NBR, FPM shaft seal	
· · · · · · · · · · · · · · · · · · ·		haft Type (For maximum permissible shaft torque refer to page 33)	40 56
			• •
			1
			• •
			40 56
			• •
Solenoid Voltage (EP, EZ, or DA only) 12 Volt DC •			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
		ort Connections	40 56
Pressure Cut-Off		Ports A & B (SAE 4-bolt flange), on top and bottom	• •
With Pressure Cut-Off		harge Pump	40 56
Neutral Position Switch (HW control only)			• •
Without Neutral Position Switch (no code)			• •
With Neutral Position Switch			• •
Mechanical Stroke Limiter			0 0
	• • • • • • • Omit	hrough-Drive	40 56
		-	
Porto V. V. for Straking Processo		Shaft Flange SAE A (%" 9T 16/32P) SAE A, 2-bolt	• •
Ports X ₃ , X ₄ for Stroking Pressure Without Ports X ₃ , X ₄ (no code)			
			••
			• -
Regulating (DA) Cartridge NV EZ DG EP HW HD DA 4	40 36 71 90 123 160		- •
With DA Cartridge, fixed adjustment and			
			40 56
With DA Cartridge, mech. adjust. w/lever and			
Hydraulic Inching Valve built on •			• •
With DA Cartridge, fixed adjustment and			• •
connection for TH7 master controller - ● ● ● ● ● ●		·	• •
Series		with bypass	• •
	3 Fi	ltration	40 56
Index	F	Filtration in Charge Pump suction line	• •
	2	Charge Pressure Filtration (Ports Fe and Fa)	• •
Direction of Detetion		Cold start valve and ports for external charge circuit filter (Ports Fe and Fa)	0
Direction of Rotation		Mounted Filter (Without contamination indicator) ③	• •
(As viewed from drive shaft)	clockwise R	Filter with visual contamination indicator ③	• •
	counter-clockwise L	Filter with electrical contamination indicator ③	• •
 Shaft Option "S" is standard for the front pump of tandem units. 	Available	Filter with visual and electrical contamination indicator ③	• •
 Shart Option 'S is standard for the nonc pump of tandem units. See Page 6. 	O On Request;	External Charge Supply (Units without charge pump-N00 or K)	• •
 With "Cold Start" bypass valve. See page 7. 	Consult Factory *S	See Appendix for Sizes 28 and 250.	
	 Not Available 		

Technical Data

Description

The AA4VG is a swashplate design, variable displacement, over center, axial piston pump. It has been designed exclusively for closed circuit hydrostatic transmissions where a self-contained pump package is required. The pump design incorporates a charge pump, a charge pressure relief valve, two combination high pressure relief and make-up check valves, and an integrated pressure cut-off valve.

Installation

The AA4VG pump may be mounted in any position around the horizontal (drive shaft) axis. Other mounting orientations (e.gdrive shaft vertical) are possible, but should be reviewed with a Rexroth Application Engineer prior to finalizing the design. The case drain line should be connected to the highest case drain port (T₁ or T₂) so that the pump case always remains full of oil. The case drain piping, or hose, should be sized to accept the full flow of the charge pump at the maximum anticipated drive speed, with minimal pressure drop.

Fluid Recommendations

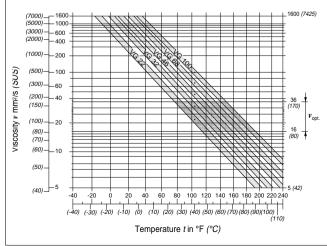
The AA4VG pumps are supplied as standard for use with good quality, petroleum oil based, anti-wear hydraulic fluids. More detailed information regarding the selection of hydraulic fluids and their application limits can be found in our Data Sheets RA 90220 (Petroleum Oil), RE 90221 (Biodegradable Fluids) and RA 90223 (Type HF–Fire Resistant/Synthetic Fluids).

For applications with biodegradable or Type HF fluids, possible reduction of the operating specifications may be required. Please consult Rexroth and your oil supplier.

Operating Viscosity Range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at normal loop operating temperature) be selected from within the range:

Optimum Viscosity (V_{opt}) 80...170 SUS (16...36 mm²/S)


Viscosity Limits

Max. Viscosity at startup (V_{max})	. 7273 SUS (1600 mm ² /S)
Min. Viscosity for short duration (V_{min})	42 SUS (5 mm ² /S)

Operating Temperature Limits

Min. operating temperature	-13°F (-25°C)
Absolute min. temperature	-40°F (-40°C)
Max. operating temperature for short duration	239°F (115°C)

Selection Diagram

Notes on hydraulic fluid selection

In order to select the correct fluid, it is necessary to know the normal operating temperature in the circuit (closed loop), when the system is operated at the design ambient temperature.

The hydraulic fluid should be selected so that, within the operating temperature range, the fluid viscosity is within the optimum range V_{opt} (see shaded area of the selection diagram). We recommend that the higher viscosity grade is selected in each case.

Example: At an ambient temperature of X°F the closed circuit fluid temperature is 140°F (60°C). Within the optimum operating viscosity range V_{opt} (shaded area), this corresponds to ISO viscosity grades VG 46 or VG 68. VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and pump speed and is typically higher than the circuit temperature. However, maximum temperature at any point in the system must be limited to 239°F (115°C).

If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperatures please consult Rexroth.

Fluid Cleanliness Levels

In order to ensure proper and reliable operation, the hydraulic fluid must be maintained at a minimum cleanliness level of 18/15 (ISO/DIS 4406; SAE J1165). Axial piston pump component life is directly affected by the cleanliness of the fluid in the system.

Temperature Range	-40195°F	195240°F
	(-4090°C)	(90115°C)
Cleanliness Recommendations:	Class	Class
ISO/DIS 4406 (SAE J1165)	18/15	17/14
NAS 1638	9	8
SAE, ASTM, AIA	6	5

Operating Pressures Ranges

Main pump:

Nominal charge pressure; p _{sp}	20 bar (290 psi)
Nominal pressure (port A or B); p _N	. 400 bar (5800 psi)
Peak pressure (port A or B); p _{max}	. 450 bar (6525 psi)

Maximum case drain pressure $(T_1, T_2, T_3, \text{ and } T_4)$

p _L	
short term (cold start)	

Charge pump:

Nominal pressure p _{sp} 20 bar (290 p	31)
Peak pressure p _{H max} 40 bar (580 p	si)
Min. pressure at charge pump inlet port (S):	

at V=141 SUS (30 cSt)	p≥0.8 bar abs. (6.3 in-Hg.)
at cold start	. p≥0.5 bar abs. (15.2 in-Hg.)

Technical Data

AA4VG Specifications (Theoretical values: rounded)

Size					40	56	71	90	125	180
Displacement	Variable pu	mp	V _{g max}	cm ³ /rev	40	56	71	90	125	180
				in ³ /rev	2.44	3.42	4.33	5.49	7.63	10.98
	Charge pun	np	V _{gH}	cm ³ /rev	8.4	11.1	18.7	18.7	25.7	36.9
				in3/rev	0.51	0.68	1.14	1.14	1.56	2.25
Speed	max. rpm at	t V _{g max}	n _{max cont}	rpm	4000	3600	3300	3050	2750	2400
	limited max.	. rpm ①	n _{max limit}	rpm	4200	3900	3600	3300	3100	2900
	intermittent	max. rpm 2	n _{max Interm}	rpm	5000	4500	4100	3800	3450	3000
	minimum rp	m	n _{min}	rpm	500	500	500	500	500	500
Flow	Flow at n _{max cont} and V _{g max}		Q _{max}	L/min	160	202	234	275	344	432
				gpm	42.3	53.4	61.8	72.7	90.9	114.1
Power	at n _{max cont}	∆p = 400 bar	P _{max}	kW	107	134	156	183	229	288
		∆p = 5800 psi		hp	144	180	209	245	307	386
Torque	at $V_{g max}$	∆p = 400 bar	M_{max}	Nm	254	356	451	572	795	1144
(without charge	e pump)	∆p = 5800 psi		lb-ft	187	263	333	423	586	844
		∆p = 100 bar	Μ	Nm	63.5	89	112.8	143	198.8	286
		∆p = 1450 psi		lb-ft	46.8	65.6	83.2	105.5	146.6	210.9
Moment of inertia (about drive axis) J		kgm ²	0.003	0.0051	0.0072	0.0106	0.0164	0.0323		
				lb-ft ²	0.0712	0.1210	0.1709	0.2515	0.3892	0.7665
Weight (standa	rd model with	out through drive)	m	kg	31	38	50	66	80	104
				lbs.	68	84	110	145	176	229

① Limited maximum rpm: - at half corner power (e.g. at $V_{g max}$ and $p_N/2$) Intermittent maxi

dle speed

- during engine overspeed: $\Delta p = 70-150$ bar (1015-2176 psi) and V_{g max}

- with reversing loads: $\Delta p < 300$ bar (4350 psi) and t < 5 seconds

 $V_a = Displacement (cm³ or in³) per revolution$

 $\Delta p = Differential pressure$

n = Speed (rpm)

Input Drive (Permissible axial and radial loading on drive shaft)

Size			40	56	71	90	125	180
Distance of F_q (from shaft shoulder)	а	mm	17.5	17.5	20.0	20.0	22.5	25.0
	а	in	0.69	0.69	0.79	0.79	0.89	0.98
	b	mm	30	30	35	35	40	45
	b	in	1.18	1.18	1.38	1.38	1.57	1.77
	с с	mm	42.5	42.5	50	50	57.5	60
a, b, c	с	in	1.67	1.67	1.97	1.97	2.26	2.36
Max. permissible radial load at distance	a F _{q max}	N	3600	5000	6300	8000	11000	16000
	а	lbs.	809	1124	1416	1798	2473	3597
_	b $F_{q max}$	N	2891	4046	4950	6334	8594	12375
	b	lbs.	650	910	1113	1424	1932	2782
_	c F _{q max}	N	2416	3398	4077	5242	7051	10150
	С	lbs.	543	764	917	1178	1585	2282
Max. permissible axial load	$\pm F_{q max}$	N	1500	2200	3500	3500	4800	6000
		lbs.	337	495	787	787	1079	1349

Filtration Options

Many factors influence the selection of a filter to achieve the desired cleanliness level, including: dirt ingression rate, required cleanliness level, and system complexity. We have found the following filter Beta (ß) ratios (ISO 4572) to be satisfactory:

Suction Filtration	$\beta_{10} \ge 2.0 \& \beta_{30} \ge 100$
Charge Pressure Filtration	.ß ₁₀ ≥10.0 & ß ₂₀ ≥100

Machine testing is necessary to confirm the ability of the selected filter to maintain the desired fluid cleanliness levels.

Charge Flow Suction Filtration (standard model)...S

Filter type: Filter without bypass

Filter element pressure drop:

at V=141 SUS (30 cSt); $n=n_{max} \dots \Delta p \leq 0.1$ bar (1.5 psi) at V=4635 SUS (1000 cSt); n=1000 rpm. . ∆p≤0.3 bar (4.5 psi)

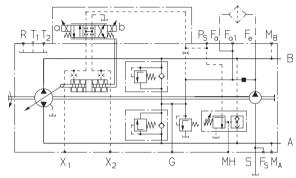
Min. pressure at charge pump inlet port (S): at V=141 SUS (30 cSt)..... $p \ge 0.8$ bar abs. (6.3 in-Hg.) at cold start $p \ge 0.5$ bar abs. (15.2 in-Hg.) The filter should be fitted with a ΔP indicator and/or switch.

Filtration Options

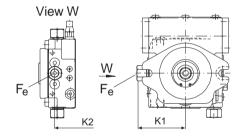
Charge Pressure Filtration...D (Ports Fe & Fa)

Filter type: Filter without bypass

Filter element pressure drop (line mounted filter):


at V=141 SUS (30 cSt); $n = n_{max} \dots \Delta p \le 1$ bar (14.5 psi) at cold start $\dots \Delta p_{max} = 3$ bar (43.5 psi) (valid for entire speed range $n_{min} = n_{max}$)

Please note:


 With Direct Operated Hydraulic Control–Type DG, control pressure should be supplied from the P_S port.

• The filter should be fitted with a ΔP indicator and/or switch set at \leq 3 bar (43.5 psid).

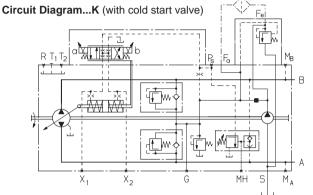
Circuit Diagram...D (Ports Fe & Fa)

Dimensions...D (Ports Fe & Fa)

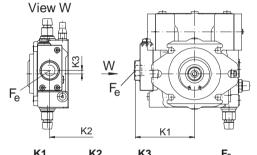
Size	K1 mm (in)	K2 mm (in)	Fe
40	112 (4.40)	198.7 (7.82)	3/4 "-16 UNF-2B; 15 deep
56	115 (4.52)	215.4 (8.48)	3/4 "-16 UNF-2B; 15 deep
71	134 (5.27)	239.0 (9.40)	11/16 "-12 UN; 20 deep
90	128 (5.03)	248.5 (9.78)	11/16"-12 UN; 20 deep
125	147 (5.78)	267.9 (10.5)	15/16"-12 UN-2B; 20 deep
180	148 (5.82)	311.9 (12.2)	15/16 "-12 UN-2B; 20 deep

External Charge Supply...E (without charge pump)

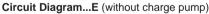
On units supplied without an integrated charge pump (N00 or K...) the suction port (S) is plugged, and the external charge supply is connected at port $F_{a}. \label{eq:keylor}$

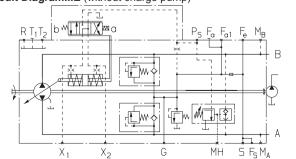

Please note that the externally supplied charge flow must be maintained at the cleanliness levels indicated on page 4.

Charge Pressure Filtration...K (with cold start valve)


Similar to option D, except with cold start valve, providing filter bypass function and charge pump protection.

$\begin{array}{llllllllllllllllllllllllllllllllllll$
Port F _e To line mounted filter Port F _a From line mounted filter

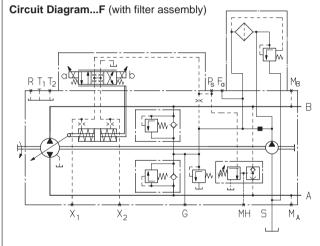

The filter should be fitted with a ΔP indicator and/or switch set at \leq 3 bar (43.5 psid).



Dimensions...K (with cold start valve)

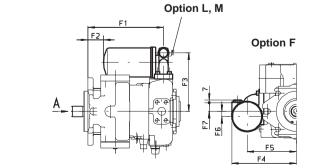
Size	K1 mm (in)	K2 mm (in)	K3 mm (in)	Fe
40	122.5 (4.82)	198.7 (7.82)	0	3/4"-16 UNF-2B; 15 deep
56	125.5 (4.94)	215.4 (8.48)	0	3/4"-16 UNF-2B; 15 deep
71	145.5 (5.72)	239.0 (9.40)	8 (0.31)	11/16 "-12 UN; 20 deep
90	139.5 (5.49)	248.5 (9.78)	24 (0.94)	11/16 "-12 UN; 20 deep
125	172.0 (6.77)	267.9 (10.5)	20 (0.78)	15/16 "-12 UN-2B; 20 deep
180	173.0 (6.81)	311.9 (12.2)	3 (0.11)	15/16"-12 UN-2B; 20 deep

Filtration Options

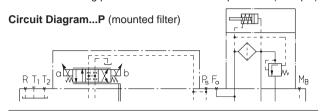

Charge Pressure Filtration...F (mounted filter) (Without contamination indicator)

Filter element pressure drop (mounted filter):

at V=141 SUS (30 cSt); n=n_{max}..... $\Delta p \le 1$ bar (14.5 psi) at cold start $\Delta p_{max}=3$ bar (43.5 psi) (valid for entire speed range n_{min}-n_{max})


Please note:

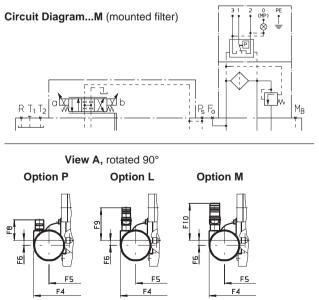
- Max. perm. charge pressure for sizes 40 and 56: p_{Sp max} = 510 psi (35 bar)
- With Direct Operated Hydraulic Control–Type DG, control pressure should be supplied from the P_S port.
- The filter should be fitted with a ΔP indicator and/or switch set at \leq 3 bar (43.5 psid).

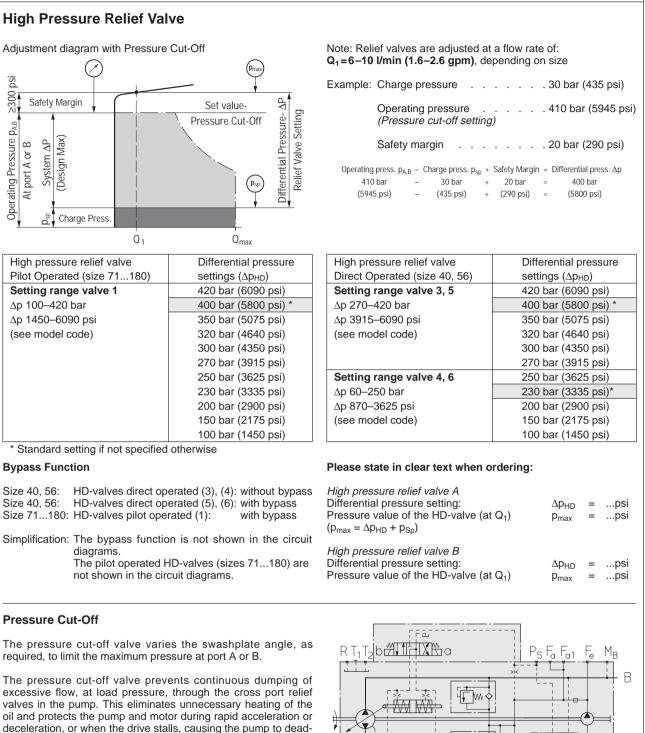

Dimensions...F, P, L, M in mm (in) (with filter assembly)

Size	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
40	198.7 (7.82)	46.7 (1.8)	160 (6.29)	175 (6.88)	135 (5.31)	0	42 (1.6)	78.5 (3.09)	122 (4.80)	125 (4.92)
56	215.4 (8.48)	63.4 (2.49)	163 (6.41)	178 (7.00)	138 (5.43)	0	42 (1.6)	78.5 (3.09)	122 (4.80)	125 (4.92)
71	239 (9.40)	50 (1.96)	185 (7.28)	203.5 (8.01)	155 (6.10)	16 (0.62)	29 (1.1)	65.5 (2.57)	109 (4.29)	112 (4.40)
90	248.5 (9.78)	59.4 (2.33)	179 (7.04)	197.5 (7.77)	149 (5.86)	0	53 (2.0)	89.5 (3.52)	133 (5.23)	136 (5.35)
125	267.9 (10.5)	62.8 (2.47)	201 (7.91)	219.5 (8.64)	171 (6.73)	0	53 (2.0)	89.5 (3.52)	133 (5.23)	136 (5.35)
180	311.9 (12.2)	37.9 (1.49)	202 (7.95)	220.4 (8.67)	171.9 (6.76)	17 (0.66)	36 (1.4)	72.5 (2.85)	116 (4.56)	119 (4.68)

Charge Pressure Filtration...P (mounted filter) (With visual contamination indicator)

Similar to option F, except model P includes visual contamination indicator. Indication: Green/Red window. Indicator switching pressure..... $\Delta p = 3$ bar (43.5 psi)

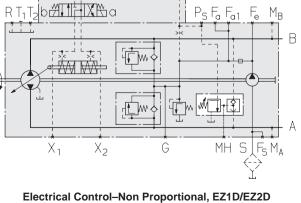



Charge Pressure Filtration...L (mounted filter) (With electrical contamination indicator)

Similar to option F, except model L includes electrical contamination indicator. Indication: Electrical.

Indicator switching pressure. $\Delta p = 3$ bar (43.5 psi) Max switching power at 24 V DC 60 W (2.5 A) Max switching power at 12 V DC 30 W (2.5 A) **Circuit Diagram...L** (mounted filter)

Charge Pressure Filtration...M (mounted filter) (With visual and electrical contamination indicator)



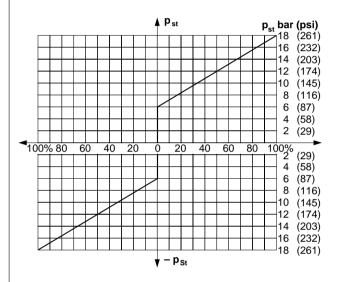
The pressure peaks that occur with rapid swivel angle changes, and also the maximum system pressure, are further protected by the high pressure relief valves.

The pressure cut-off valve should be set 20–30 bar (290–435 psi) less than the high pressure relief valve settings.

Standard Adjustment Range: 2175–6500 psi (150–450 bar)

with Pressure Cut-Off

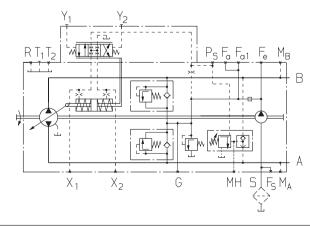
head.


HD Hydraulic Pilot Control

The flow output of the pump is infinitely varied between 0 and 100%, proportional to the difference in pilot pressure applied to the two control ports (Y_1 and Y_2), in the range of 6 to 18 bar (87 to 261 psi).

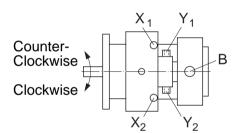
The pilot signal, which originates from an external, remote source, is pressure only. Flow is negligible as the pilot signal is only acting on the spool of the control valve.

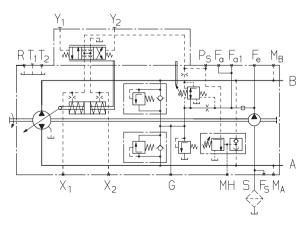
This spool then directs control oil into and out of the stroking cylinder to adjust pump displacement as required.


A feedback lever, connected to the stroking piston, maintains the pump flow for any given pilot signal.

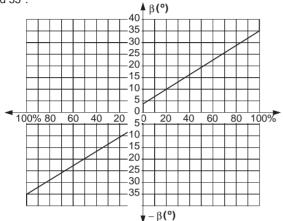
 $\begin{array}{ll} \mbox{Pilot pressure } p_{st} : & 6-18 \mbox{ bar } (87-261 \mbox{ psi}) \mbox{ at ports } Y_1, \, Y_2 \\ \mbox{Begin of regulation:} & 6 \mbox{ bar } (87 \mbox{ psi}) \\ \mbox{End of regulation:} & 18 \mbox{ bar } (261 \mbox{ psi}) \end{array}$

If the pump is also fitted with a DA control valve, automotive control of the vehicle transmission is possible. For DA control valve see page 12, 13, 28, & 29.


Standard model


Data Table – AA4VG...HD Direction of rotation – Control – Thruput flow direction

		Direction of rota	001		apat now	anconon
			Pilot	Control	Direction	Operating
		Size	Pressure	Pressure	of Flow	Pressure
_	0		Y1	X1	A to B	MB
tior	Clockwise	40, 56	Y ₂	X2	B to A	MA
ota	lock		Y ₁	X1	B to A	MA
J R		71, 90, 125, 180	Y ₂	X2	A to B	MB
u u	. ია		Y1	X1	B to A	Ma
cti	ter-	40, 56	Y2	X2	A to B	MB
Direction of Rotation	Counter- Clockwise		Y1	X1	A to B	MB
Ľ	-0	71, 90, 125, 180	Y ₂	X ₂	B to A	MA


Model with DA control valve

HWRotary Manual Servo Control

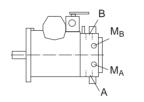
The flow output of the pump is infinitely varied in the range of 0 to 100%, proportional to the rotation of the control lever between 0° and $\pm 35^{\circ}$ from the spring centered zero flow position.

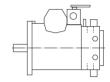
A feedback lever, connected to the stroking piston, maintains the pump flow for any given position of the control lever between 0° and 35° .

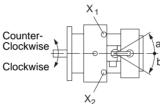
Required lever torque: 85–210 Ncm (7.5–19 lb-in) Maximum lever torque: 250 Ncm (22 lb-in)

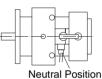
If the pump is also fitted with a DA valve, automotive control of the vehicle transmission is also possible. For DA control valve see page 12, 13, 28, & 29.

For pressure cut-off see page 8.

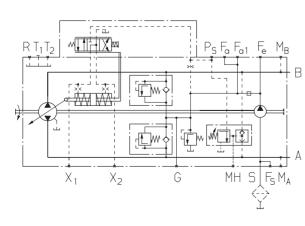

Option: Neutral position switch...HWDL


When the HW control lever is in the neutral position, the neutral position switch is closed. The switch opens if the control lever is moved out of neutral in either direction.

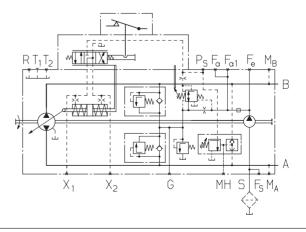

The neutral position switch provides a safety function for systems that require zero flow under certain operating conditions. (e.g.-engine start).


Data Table – AA4VG...HW Direction of rotation – Control – Thruput flow direction

		2				
			Lever	Control	Direction	Operating
		Size	Direction	Pressure	of Flow	Pressure
_	0		а	X2	B to A	Ma
tior	wise	40, 56	b	X1	A to B	MB
ota	Clockwise		а	Х2	A to B	MB
fR		71, 90, 125, 180	b	X1	B to A	MA
u u	. a		а	Х2	A to B	MB
cti	ter-	40, 56	b	X1	B to A	Ma
Direction of Rotation	Counter- Clockwise		а	X2	B to A	Ma
	-0	71, 90, 125, 180	b	X1	A to B	MB



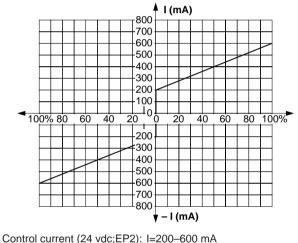
Switch


Technical data for neutral position switch

Load performance	20A (continuous)
Switch performance	15A / 32V (DC)
	4A / 32V (AC - inductive)

Standard model

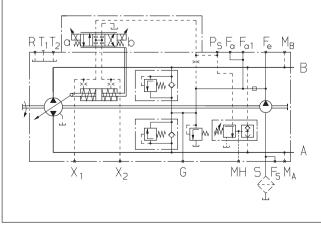
Model with DA control valve and neutral position switch

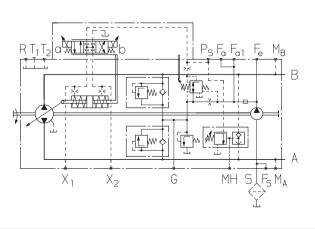


EPProportional Electrical Control

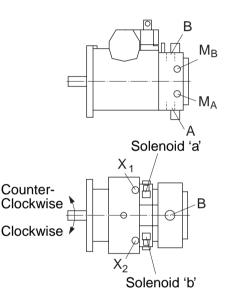
The flow output of the pump is infinitely varied in the range of 0 to 100%, proportional to an electrical current, in the range of 200–600 mA at 24 volts DC, supplied to solenoid a or b. (A current of 400 to 1200 mA is required for the 12 volt solenoids.

The electrical energy is converted to a force acting on the control spool. The spool then directs control oil in and out of the stroking piston to stroke the pump as required. A feedback lever, connected to the stroking piston, maintains the pump flow for any given current within the control range.


Proportional amplifiers MDSD, PVR-PVRS and special function amplifier EDA are available to control the proportional solenoids. As well, electronic control of the solenoids can be achieved by using a microcontroller with software that is programmed to perform special functions for custom applications.


Begin of control:	I=200 mA (V _{q0})
End of control:	I=600 mA (V _{g max})
Control current (12 vdc;EP1):	I=400–1200 mA
Begin of control:	I=400 mA (V _{g0})
End of control:	I=1200 mA (V _{g max})

If the pump is also fitted with a DA control valve, automotive control of the vehicle transmission is possible. For DA control valve see page 12,13, 28, & 29.



Model with DA control valve

Data Table – AA4VG…EP
Direction of rotation – Control – Thruput flow direction

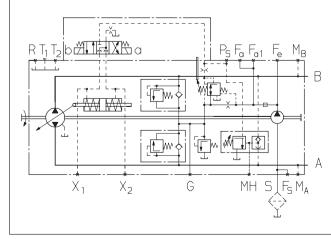
	[Control	Direction	Operating
		Size	Solenoid	Pressure	of Flow	Pressure
_	0		а	X1	A to B	MB
tio	wise	40, 56	b	X2	B to A	MA
ota	Clockwise		а	X ₁	B to A	MA
fR	8	71, 90, 125, 180	b	X2	A to B	MB
	. 0		а	X1	B to A	Ma
gi	nter-	40, 56	b	X2	A to B	MB
Direction of Rotation	Counter- Clockwise		а	X1	A to B	MB
	-0	71, 90, 125, 180	b	X ₂	B to A	MA

DA Hydraulic Control Speed Dependent

Pilot pressure from the DA regulating cartridge is directed to the stroking piston of the pump by a 4/3 way directional valve. Pump displacement is infinitely variable in each direction of flow, proportional to both pump drive speed and discharge pressure. Flow direction (i.e.-Machine forward or reverse) is controlled by energizing solenoid a or b (refer to flow direction data table at right).

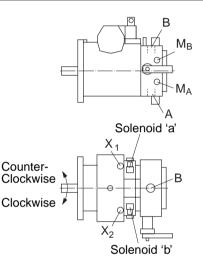
Increasing pump drive speed generates a higher pilot pressure from the DA cartridge, with a subsequent increase in pump flow and/or pressure.

Dependent on the pump operating curve, increasing system pressure causes the pump to swivel back towards a smaller displacement.


A relatively constant torque input to the pump is achieved by this combination of de-stroking the pump as the operating pressure increases and the response to the "pull-down" of the prime mover (reduced pilot pressure).

Any additional power requirements, such as implement hydraulics, may result in engine pull down. This leads to a reduction in pilot pressure and therefore pump displacement (i.epower). The power thus released is then available to supply that demanded by the implement hydraulics. Automatic power division and full utilization of available power is thus achieved for both the vehicle transmission and the implement hydraulics.

Minimizing the engine pull down provides optimum usage of the available drive power. This can be achieved by "partial inching", using the adjustable regulating cartridge with lever (catalog code options 3 and 5). With partial inching, the DA cartridge is mechanically coupled to the accelerator pedal. This means that when a certain engine speed is reached, (movement of the accelerator pedal), the control curve is offset parallel to the engine speed curve.


Application of the DA Control is only appropriate on certain types of vehicle drive systems, and requires a careful review of the engine and vehicle parameters to ensure that the pump is set up correctly. All DA applications **must** therefore be reviewed by a Rexroth Application Engineer.

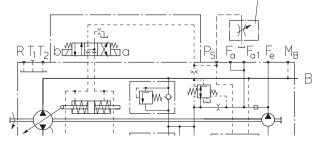
Hydraulic Control, Speed Dependent (DA) control valve, mech. adjustable with control lever DA1D3/DA2D3

Data Table – AA4VG…DA
Direction of rotation – Control – Thruput flow direction

				Control	Direction	Operating
		Size	Solenoid	Pressure	of Flow	Pressure
_	0		а	X2	B to A	Ma
tior	wise	40, 56	b	X1	A to B	MB
ota	Clockwise		а	X2	A to B	MB
fR		71, 90, 125, 180	b	X1	B to A	MA
l u	. 0		а	X2	A to B	MB
ctio	ter-	40, 56	b	X1	B to A	Ma
Direction of Rotation	Counter- Clockwise		а	X2	B to A	Ma
	-0	71, 90, 125, 180	b	X ₁	A to B	MB

Rotary Inching Valve

This valve is used to provide vehicle inching function, and is used in conjunction with the DA Regulating Cartridge with fixed adjustment.


It permits the pilot pressure (speed dependent) to be reduced as necessary, independently of the pump drive speed, controlled by rotation of the inching lever.

Maximum angle of lever operation is 90°. The position of the lever is optional (inching operation clockwise or counter-clockwise).

The valve is mounted separately from the pump and connected to the P_S port. Maximum line length should be limited to approximately 2 meters (79").

Hydraulic Control, Speed Dependent (DA) with separate rotary inching valve

Rotary inching valve (see ordering code)

 M_B

Variable Displacement Pump AA4VG, Series 3

DA Hydraulic Control Speed Dependent

Function and control of DA valves.

Rotary Inching Valve

The rotary inch valve is to be ordered separately.

Size	Ordering Code
40, 56, 71, 90	438 553/470.05.31.01
125	438 554/470.05.31.02
180	438 555/470.05.31.03

Please state your requirements in clear text: Inching, clockwise or counter-clockwise operation of the lever (this is determined on assembly).

Attention: The rotary inch valve can be used independently from the control device.

DA regulating cartridge, fixed adjustment (2)

Pilot pressure is generated in relation to drive speed. There are no provisions for inching with this cartridge. The pump is factory preset as determined by engine/vehicle requirements.

DA regulating cartridge, mechanically adjustable w/lever (3) Pilot pressure is generated in relation to drive speed. The pump is factory preset as determined by engine/vehicle requirements. Pilot pressure may be reduced (independently of drive speed) as required, by operation of the control lever (inching function).

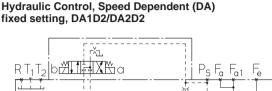
Maximum angle of lever operation is 70°. The position of the lever is optional (inching operation clockwise or counter-clockwise).

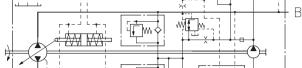
Hydraulic inching valve (4, 5)

This valve is used to provide vehicle inching function, and is used in conjunction with the DA Regulating Cartridge, either with fixed adjustment or mechanically adjustable with lever.

Model with throttle valve used on Size 40, 56, & 71.

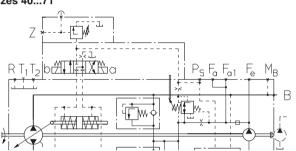
Model with pressure reducing valve used on size 90, 125, & 180.

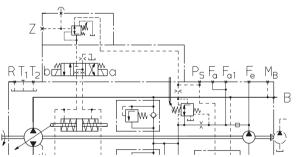

It permits the pilot pressure (speed dependent) to be reduced as necessary, independently of the pump drive speed, by applying a hydraulic pressure at Port Z. This is normally supplied from the vehicle braking system using the brake fluid of the power brakes.


Master controller TH7 as inching valve (7)

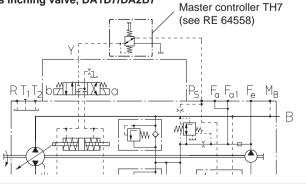
This valve is used to provide vehicle inching function, and is used in conjunction with the DA control valve, fixed setting.

Any reduction of control pressure, independent from the input speed through the mechanical operation of the master controller TH7.


The master controller is installed separately from the pump connected with the pump by 2 hydraulic control lines at ports P_s and Y. The master controller is to be ordered separately (see data sheet RE 64558)



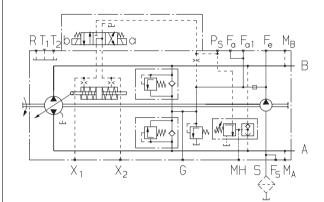
Hydraulic Control, Speed Dependent (DA) mechanically adjustable with control lever, with hydraulic inching valve, DA1D5/DA2D5


with throttle valve Sizes 40...71

with pressure reducing valve Sizes 90...180

Hydraulic Control, Speed Dependent (DA) fixed setting, with separately installed master controller TH7 as inching valve, DA1D7/DA2D7

EZ Electrical Control Non-Proportional


By energizing either solenoid a or b, internal control pressure is connected directly to the stroking piston, and the pump swivels to maximum displacement.

With the EZ control pump flow is switchable from zero flow (neither solenoid energized) to maximum flow. Flow direction is determined by which solenoid is energized (please refer to the data table at the top of page 12).

EZ1 12 vdc solenoids EZ2 24 vdc solenoids

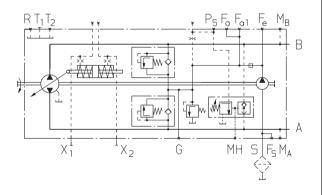
Pressure Cut-Off: Refer to page 8.

Standard model

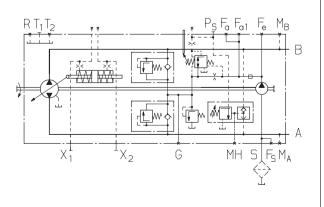
DG Hydraulic Control Direct Operated

Pumps supplied with the DG control have no control module. The module is replaced by a cover plate.

Pump output is controlled by hydraulic control pressure (P_{st}), typically supplied by a remote pilot controller, applied directly to the stroking piston through either the X_1 or X_2 port. The DG control is not a positive displacement control, as there is no control feedback device.


While pump displacement is infinitely variable between 0 and 100%, a given swashplate position can be affected by system pressure and/or pump drive speed, as well as the stroking piston centering springs.

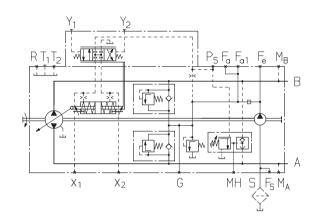
Flow direction is determined by which pilot port is pressurized (please refer to the data table at the top of page 9; Control Pressure column- X_1 ; X_2).


Nominal characteristics:

Application of the DG Control is only appropriate on certain types of vehicle drive systems, and requires a careful review of the engine and vehicle parameters to ensure that the pump is set up correctly. All DG applications should be reviewed by a Rexroth Application Engineer.

Standard model

Standard model with DA control valve

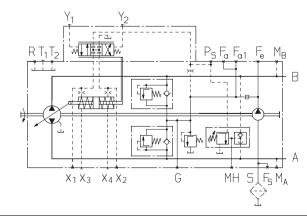

Mechanical Stroke Limiter...M

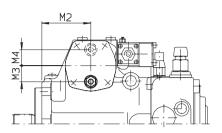
Adjustment screws to both $V_{g max}$ – values

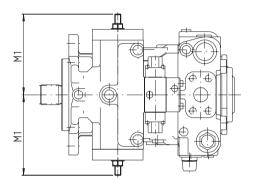
Dimensions in mm (in)

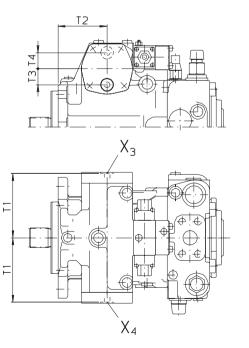
Size	M1	M2	M3	M4
40	110.6 max. (4.35)	38.1 (1.50)	24.0 (0.94)	-
56	130.5 max. (5.13)	44.0 (1.73)	25.5 (1.00)	-
71	135.4 max. (5.33)	86.3 (3.39)	-	28.5 (1.12)
90	147.0 max. (5.78)	95.7 (3.76)	31.5 (1.24)	
125	162.0 max. (6.37)	104.5 (4.11)	-	35.5 (1.39)
180	181.6 max (7.14)	138.7 (5.46)	38.0 (1.49)	-

Circuit Diagram

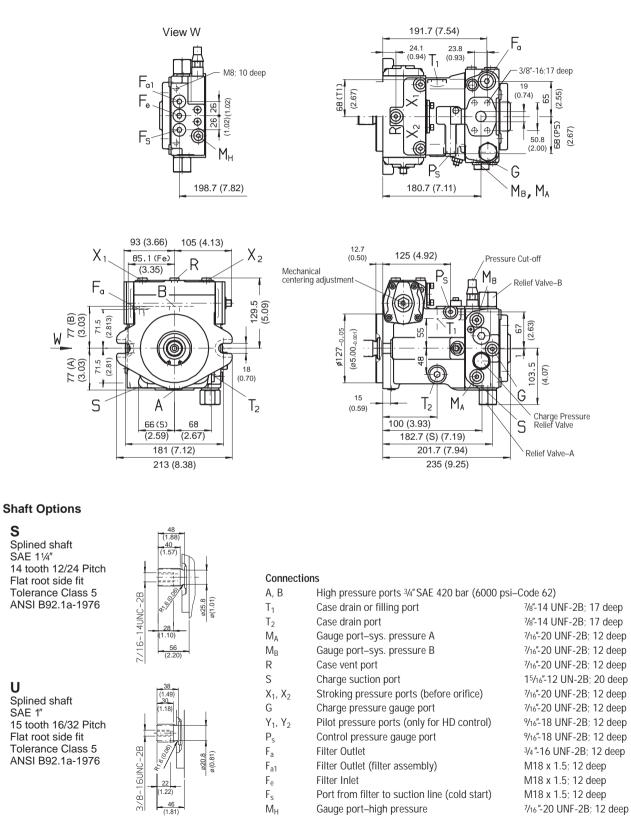


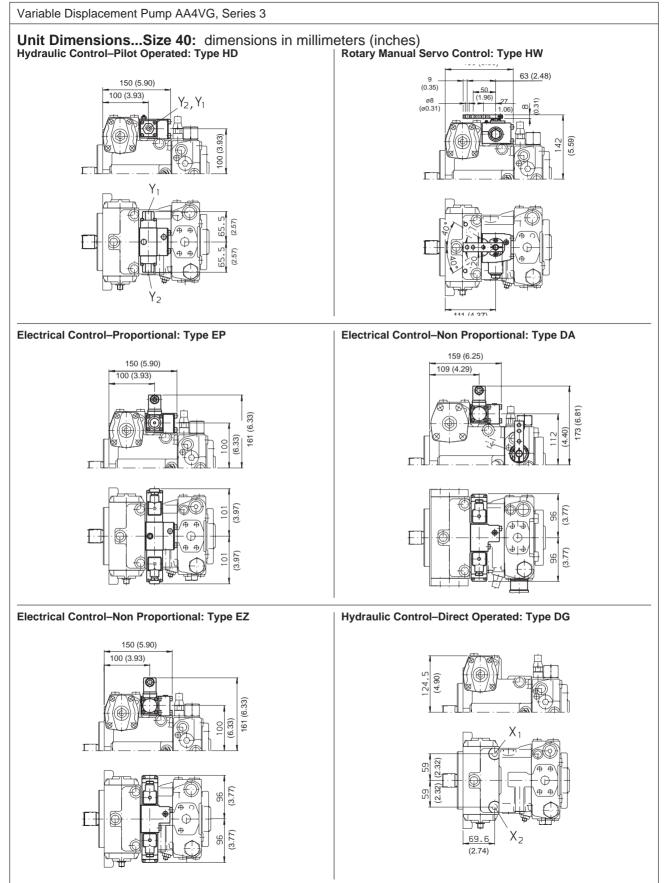

Ports X₃ and X₄ for Positioning Pressure...T

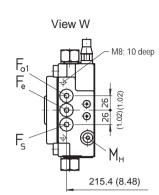

Dimensions in mm (in)

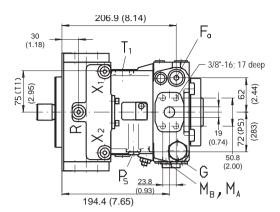

T1	T2	T3	T4	X3, X4
92 (3.62)	38.1 (1.5)	-	24 (0.94)	7/16" - 20UNF-2B
104.5 (4.11)	44 (1.7)	-	25 (0.98)	7/16" – 20UNF-2B
113.5 (4.46)	86.3 (3.4) 2	.8 (1.10)) –	7/16" – 20UNF-2B
111.5 (4.38)	95.7 (3.7)	-	30 (1.18)	7/16" - 20UNF-2B
136 (5.35)	104.5 (4.1)3	84 (1.33	5) –	7/16" - 20UNF-2B
146.5 (5.76)	138.7 (5.5)	-	35 (1.37)	7/16" – 20UNF-2B
	92 (3.62) 104.5 (4.11) 113.5 (4.46) 111.5 (4.38) 136 (5.35)	92 (3.62) 38.1 (1.5) 104.5 (4.11) 44 (1.7) 113.5 (4.46) 86.3 (3.4) 2 111.5 (4.38) 95.7 (3.7)	92 (3.62) 38.1 (1.5) - 104.5 (4.11) 44 (1.7) - 113.5 (4.46) 86.3 (3.4) 28 (1.10) 111.5 (4.38) 95.7 (3.7) - 136 (5.35) 104.5 (4.1)34 (1.33)	92 (3.62) 38.1 (1.5) - 24 (0.94) 104.5 (4.11) 44 (1.7) - 25 (0.98) 113.5 (4.46) 86.3 (3.4) 28 (1.10) - 111.5 (4.38) 95.7 (3.7) - 30 (1.18) 136 (5.35) 104.5 (4.1)34 (1.33) -

Circuit Diagram

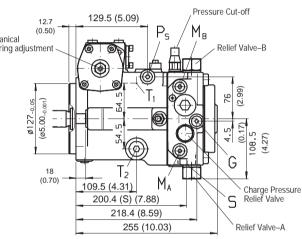




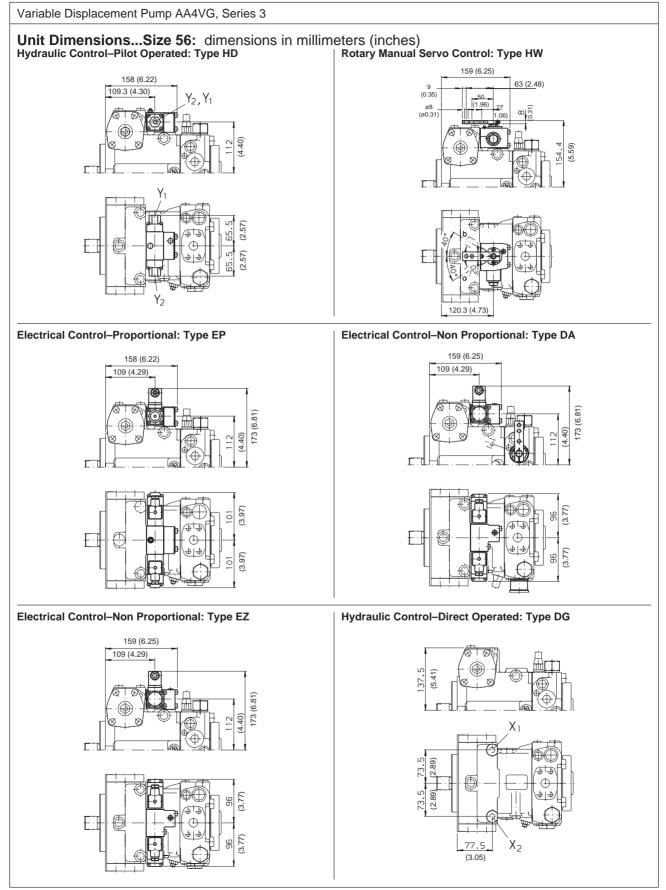

Unit Dimensions...Size 40: dimensions in millimeters (inches) Pump configuration without control module: Type NV



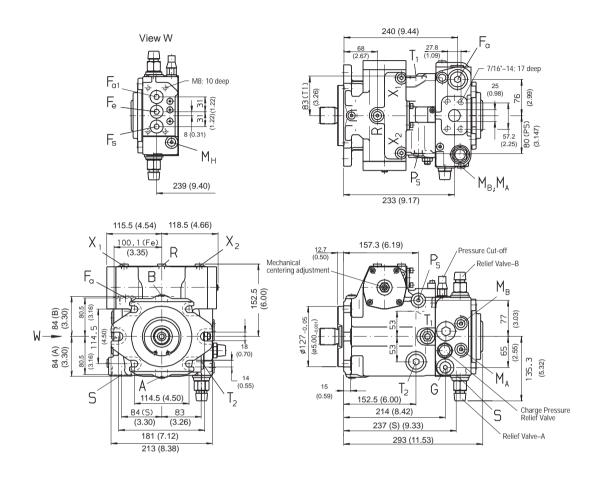

106 (4.17)


Unit Dimensions...Size 56: dimensions in millimeters (inches) Pump configuration without control module: Type NV

106 (4.17)


Shaft Options

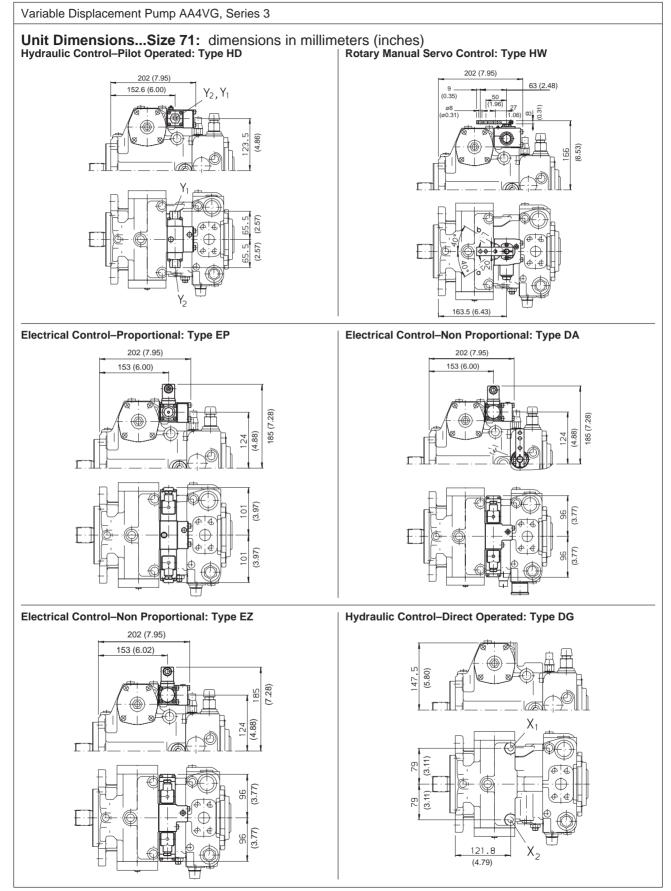
86 (B) (3.38)


86 (A) (3.38)

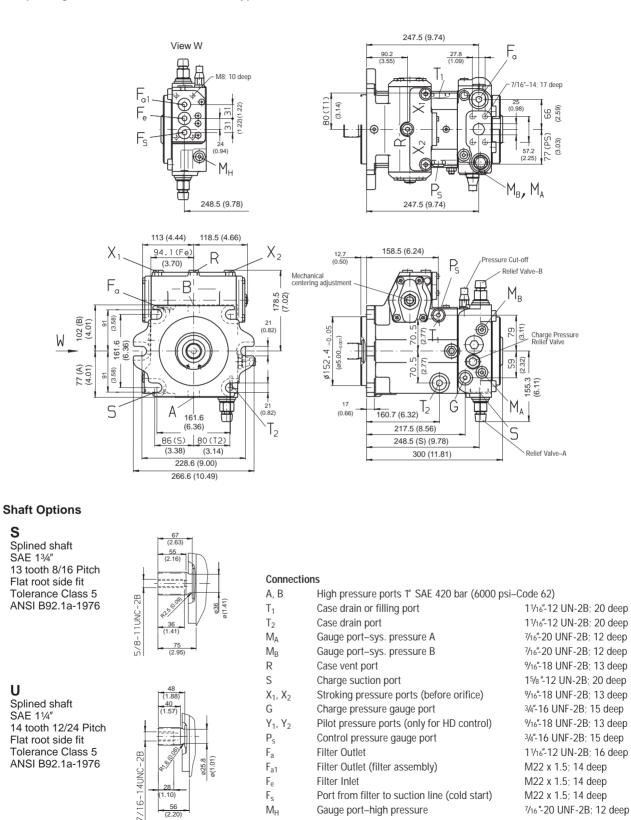
2	C
D	
-	

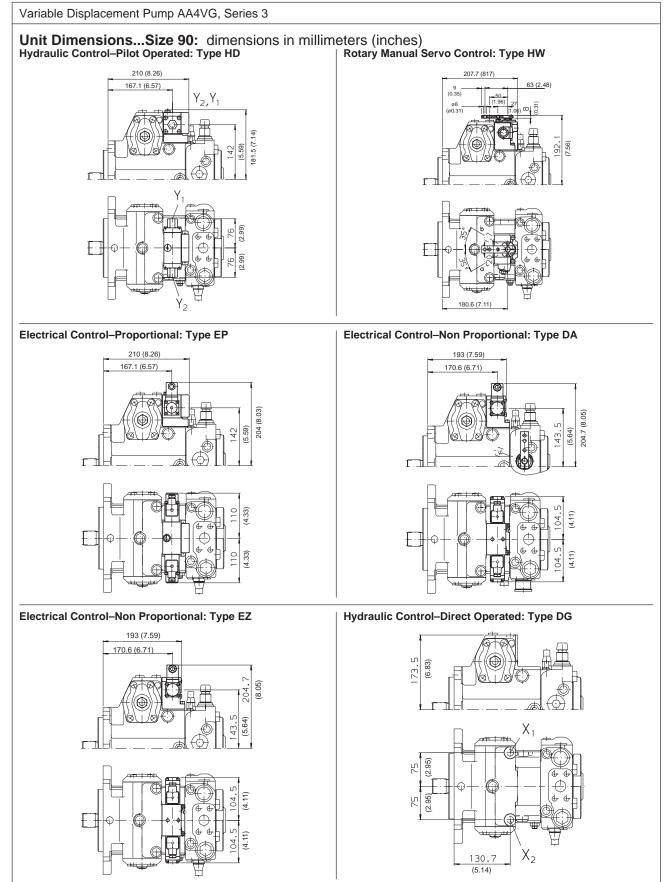
(1.88 Splined shaft SAE 11/4" 14 tooth 12/24 Pitch Connections Flat root side fit **Tolerance Class 5** А, В High pressure ports 3/4" SAE 420 bar (6000 psi-Code 62) 7/16-14UNC-2B ANSI B92.1a-1976 Case drain or filling port T_1 11/16"-12 UN-2B; 20 deep T_2 Case drain port 11/16"-12 UN-2B; 20 deep M_A Gauge port-sys. pressure A 7/16"-20 UNF-2B; 12 deep 1.10)56 Gauge port-sys. pressure B MB 7/16"-20 UNF-2B; 12 deep R Case vent port 7/16"-20 UNF-2B; 12 deep S Charge suction port 15/16"-12 UN-2B; 20 deep т X₁, X₂ Stroking pressure ports (before orifice) 7/16"-20 UNF-2B; 12 deep (1.88) Splined shaft 40. Charge pressure gauge port G 9/16"-18 UNF-2B; 12 deep SAE 13/8" Y₁, Y₂ Pilot pressure ports (only for HD control) %16"-18 UNF-2B; 13 deep 21 tooth 16/32 Pitch Flat root side fit P_{s} Control pressure gauge port %16"-18 UNF-2B; 12 deep **Tolerance Class 5** F_a Filter Outlet 3/4 "-16 UNF-2B; 12 deep 7/16-14UNC-2B ANSI B92.1a-1976 F_{a1} Filter Outlet (filter assembly) M18 x 1.5; 12 deep Filter Inlet F_{e} M18 x 1.5; 12 deep (1.10) F_s Port from filter to suction line (cold start) M18 x 1.5; 12 deep (2.20) 7/16"-20 UNF-2B; 12 deep M_H Gauge port-high pressure

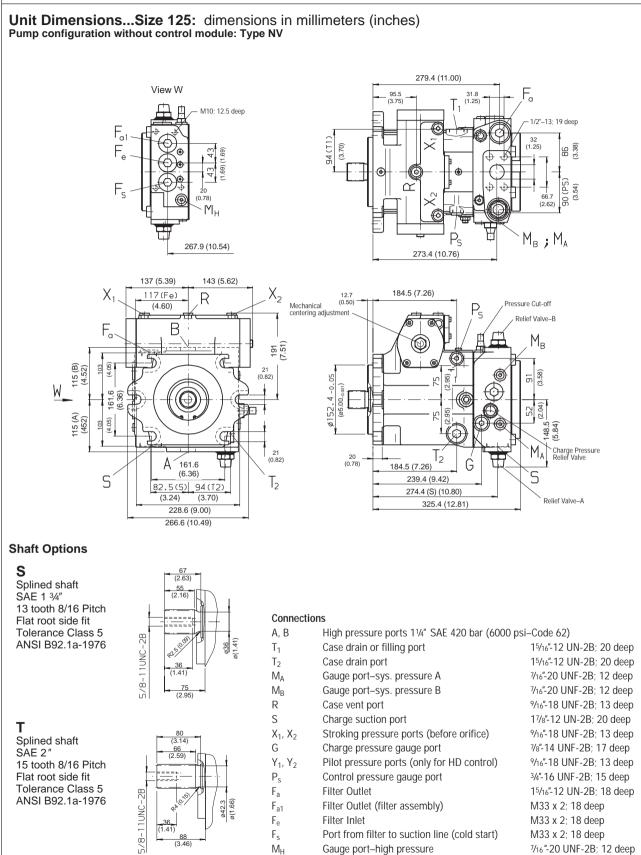
Unit Dimensions...Size 71: dimensions in millimeters (inches) Pump configuration without control module: Type NV

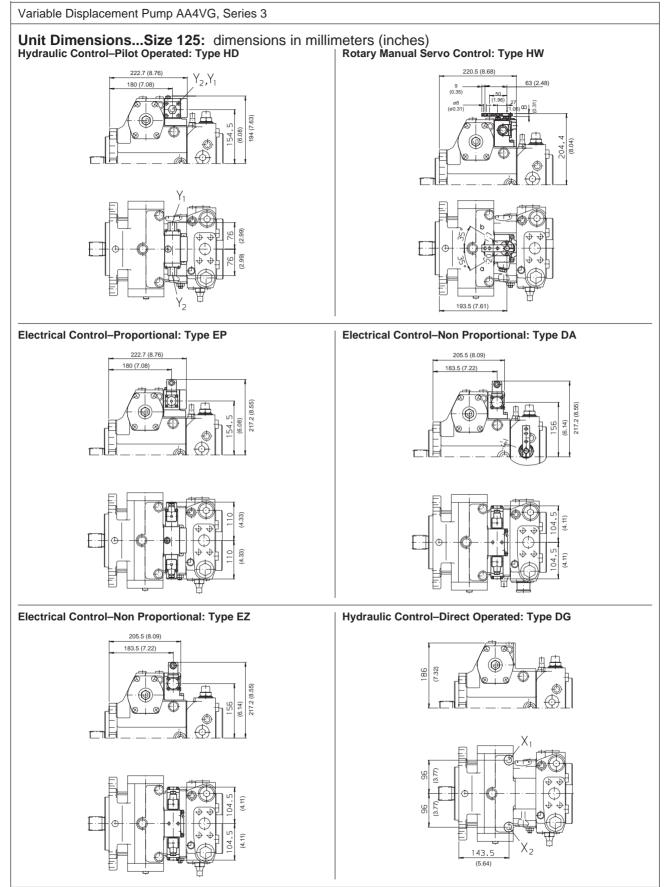


Shaft Options

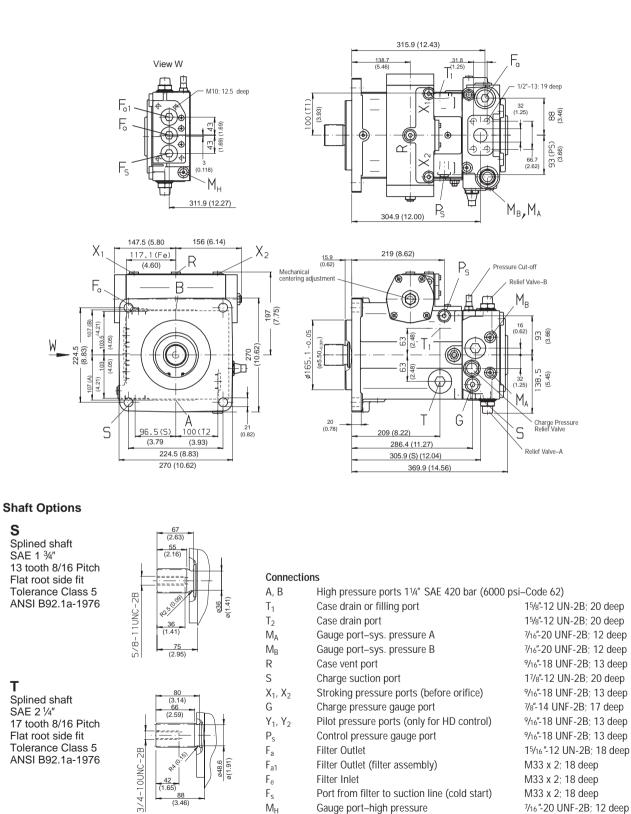

(1.88

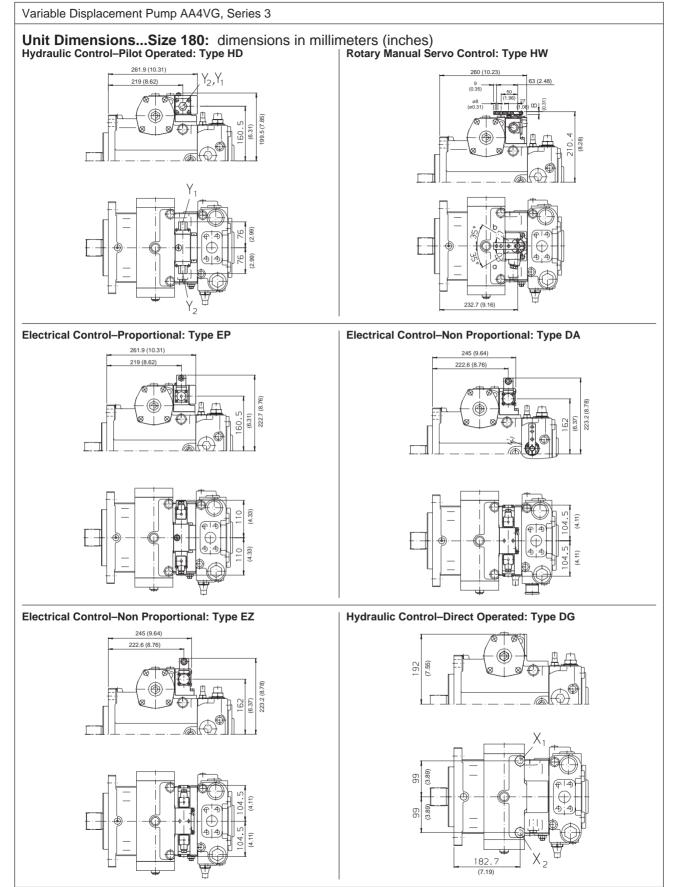

0
-
_
_


Splined shaft SAE 11/4" 14 tooth 12/24 Pitch Connections Flat root side fit **Tolerance Class 5** Α, Β High pressure ports 1" SAE 420 bar (6000 psi-Code 62) 6-14UNC-2B ANSI B92.1a-1976 Case drain or filling port T_1 11/16"-12 UN-2B; 20 deep T₂ Case drain port 11/16"-12 UN-2B; 20 deep M_A Gauge port-sys. pressure A 7/16"-20 UNF-2B; 12 deep 1.10 56 M_{B} Gauge port-sys. pressure B 7/16"-20 UNF-2B; 12 deep R Case vent port 7/16"-20 UNF-2B; 12 deep S Charge suction port 15/8"-12 UN-2B; 20 deep т <u>48</u> (1.88) X₁, X₂ Stroking pressure ports (before orifice) 7/16"-20 UNF-2B; 12 deep Splined shaft 40 G Charge pressure gauge port 3/4"-16 UNF-2B; 15 deep SAE 13/8" Y₁, Y₂ Pilot pressure ports (only for HD control) %16"-18 UNF-2B; 13 deep 21 tooth 16/32 Pitch Flat root side fit P_{s} Control pressure gauge port %16"-18 UNF-2B; 13 deep **Tolerance Class 5** Fa Filter Outlet 11/16"-12 UN-2B; 16 deep 7/16-14UNC-2B ANSI B92.1a-1976 F_{a1} Filter Outlet (filter assembly) M22 x 1.5; 14 deep Filter Inlet F_{e} M22 x 1.5; 14 deep (1.10) F_s Port from filter to suction line (cold start) M22 x 1.5; 14 deep <u>56</u> (2.20) 7/16 -20 UNF-2B; 12 deep M_H Gauge port-high pressure

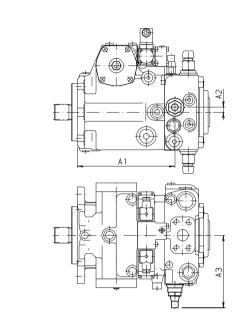


Unit Dimensions...Size 90: dimensions in millimeters (inches) Pump configuration without control module: Type NV

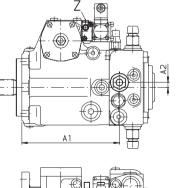


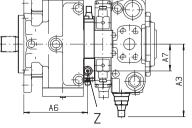


Unit Dimensions...Size 180: dimensions in millimeters (inches) Pump configuration without control module: Type NV

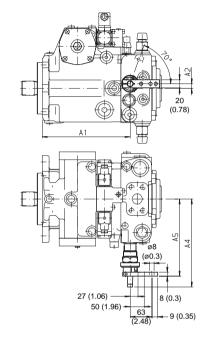


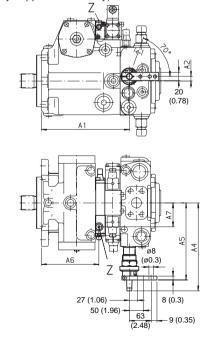
Unit Dimensions, DA Control Valves: dimensions in millimeters (inches)

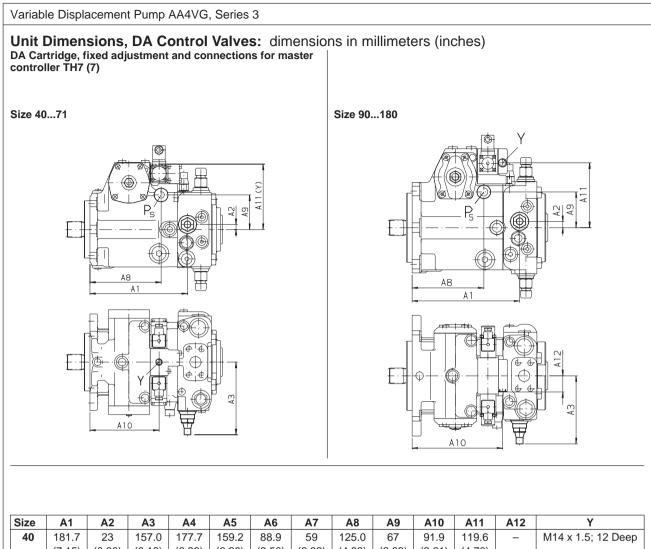

In an automotive transmission, the DA regulating cartridge is used in conjunction with the direct controlled hydraulic DA Control. However, pumps with HD, HW, or EP controls can also be equipped with a DA regulating cartridge. This provides


DA Cartridge, fixed adjustment (2)

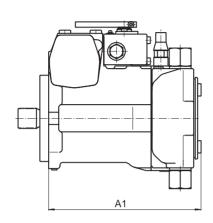
DA Cartridge, fixed adjustment and hydraulic inching valve connected (4) (only for pumps with DA control device)


Z pilot pressure port port M10 x 1; 8 deep (plugged by supplier on delivery)

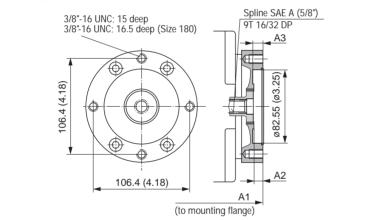

an automatic transmission function (speed dependent, high pressure control), that can be overridden (see the description of the DA Control on Page 12). The maximum flow will then be determined by the setting of the displacement control.


DA Cartridge, mechanically adjustable with lever (3)

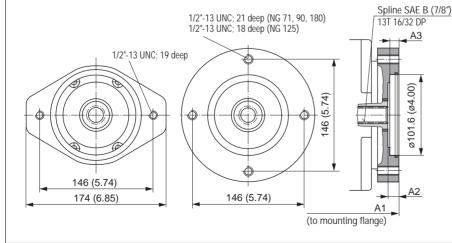
DA Cartridge, mechanically adjustable with lever and connected hydraulic inching valve (5) (only for pumps with DA control device)


Z pilot pressure port port M10 x 1; 8 deep (plugged by supplier on delivery)

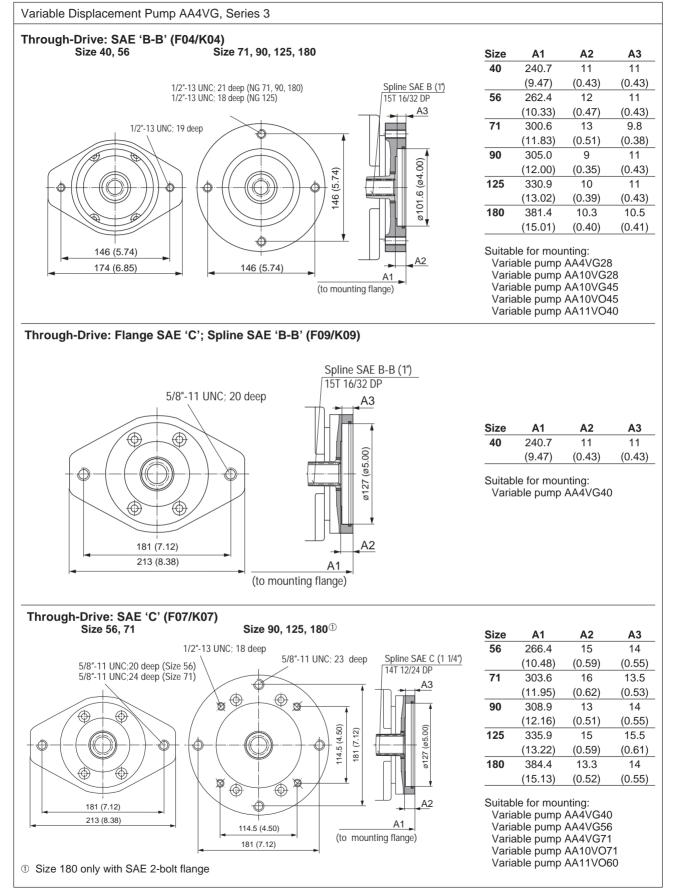
						-		-	A9	A10	A11	A12	•
40 1	181.7	23	157.0	177.7	159.2	88.9	59	125.0	67	91.9	119.6	-	M14 x 1.5; 12 Deep
((7.15)	(0.90)	(6.18)	(6.99)	(6.26)	(3.50)	(2.32)	(4.92)	(2.63)	(3.61)	(4.70)		
56 1	197.4	24.5	149.5	172.0	153.5	97.8	59	129.5	76	100.8	132.1	-	M14 x 1.5; 12 Deep
((7.77)	(0.96)	(5.88)	(6.77)	(6.04)	(3.85)	(2.32)	(5.09)	(2.99)	(3.96)	(5.20)		
71 2	215.5	11	160.0	197.0	170.0	141.0	59	157.3	76	144.8	143.5	-	M14 x 1.5; 12 Deep
(8	(8.48)	(0.43)	(6.29)	(7.75)	(6.69)	(5.55)	(2.32)	(6.19)	(2.99)	(5.70)	(5.64)		
90 2	237.5	14	145.5	182.5	155.5	185.6	66.5	159.0	79	201.6	122.5	48.5	M14 x 1.5; 12 Deep
((9.35)	(0.55)	(5.72)	(7.18)	(6.12)	(7.30)	(2.61)	(6.25)	(3.11)	(7.93)	(4.82)	(1.90)	
125 2	266.9	17	163.5	181.0	162.5	198.5	66.5	184.5	91	214.5	135.0	48.5	M14 x 1.5; 12 Deep
(1	10.50)	(0.66)	(6.43)	(7.12)	(6.39)	(7.81)	(2.61)	(7.26)	(3.58)	(8.44)	(5.31)	(1.90)	
180 2	292.9	16	164.5	187.5	169.0	237.7	66.5	219.0	93	253.7	141.0	48.5	M14 x 1.5; 12 Deep
(1	11.53)	(0.62)	(6.47)	(7.38)	(6.65)	(9.35)	(2.61)	(8.62)	(3.66)	(9.98)	(5.55)	(1.90)	

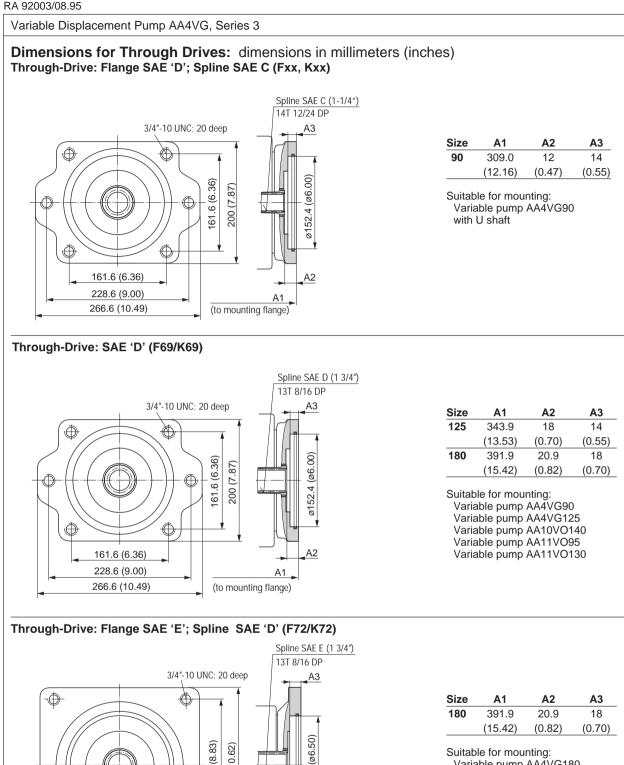

Dimensions for Through Drives: dimensions in millimeters (inches) Without charge pump & without through drive (N00)

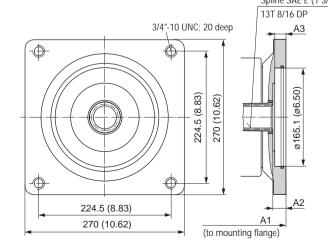
Size	A1
40	220.2 (8.66)
56	239.4 (9.42)
71	279.1 (10.98)
90	287.0 (11.29)
125	320.9 (12.63)
180	370.9 (14.60)


With Charge Pump & without through drive (F00) Standard design; see unit dimensions pages 16...27

Through-Drive: SAE 'A' (F01/K01)

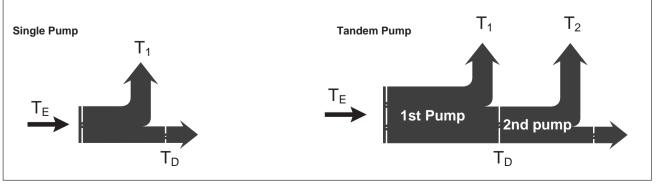

Size	A1 (F01)	A1 (K01)	A2	A3
40	239.7	234	9	10
	(9.42)	(9.21)	(0.35)	(0.39)
56	261.4	254.7	10	11
	(10.29)	(10.02)	(0.39)	(0.43)
71	297.6	297.4	9	10
	(11.71)	(11.70)	(0.35)	(0.39)
90	304.0	303.8	9	8
	(11.96)	(11.96)	(0.35)	(0.31)
125	330.9	330.7	10.5	9
	(13.02)	(13.01)	(0.41)	(0.35)
180	378.4	378.2	7.5	7.5
	(14.89)	(14.88)	(0.29)	(0.29)


Through-Drive: SAE 'B' (F02/K02) Size 40, 56 Size 71, 90, 125, 180



Size	A1	A2	A3
40	240.7	11	11
	(9.47)	(0.43)	(0.43)
56	262.4	12	11
	(10.33)	(0.47)	(0.43)
71	300.6	13	9.8
	(11.83)	(0.51)	(0.38)
90	305.0	9	11
	(12.00)	(0.35)	(0.43)
125	330.9	10	11
	(13.02)	(0.39)	(0.43)
180	381.4	10.3	10.5
	(15.01)	(0.40)	(0.41)

Suitable for mounting: Variable pump AA10VO28 Variable pump AA10VG18


Variable pump AA4VG180 Variable pump AA11VO160 Variable pump AA11VO200 Variable pump AA11VO250

Input and Through-Drive Sha			40	56	71
Corner torque (at V_{gmax} and $\Delta p = 400$ bar) ^①	т	Nm	254	356	451
contertorque (at v_{gmax} and $\Delta p = 400$ bar)	max	Lb-Ft	187	263	333
Through-drive torgue limit	т	Nm	314	521	660
Thi ough-unve torque limit	$T_{D \ lim}$	Lb-Ft	232	384	487
Input torque limit ^②		LD-I L	232	304	407
With shaft code S	т	Nm	602	602	602
With Shart code 3	T _{E lim}	Lb-Ft	444	444	444
SAE (ANSI B92.1a-1976)		Spline	(1 ¹ / ₄ "-14T 12/24DP)	(1 ¹ / ₄ "-14T 12/24DP)	(1 ¹ /4 ["] -14T 12/24DP)
With shaft code T	T _{E lim}	Nm	(11/4-141 12/24DF) -	970	970
With Shart code 1	I E lim	Lb-Ft	_	715	715
SAE (ANSI B92.1a-1976)		Spline		(1 ³ / ₈ "-21T 16/32DP)	(1 ³ / ₈ "-21T 16/32DP)
With shaft code U ³	т	Nm	- 314	(1%-211 10/32DP)	(1%-211 10/32DP)
	T _{E lim}	Lb-Ft	232	-	-
SAE (ANSI DOD 10 1074)			-	-	-
SAE (ANSI B92.1a-1976) Size		Spline	(1"-15T 16/32DP) 90	125	180
	т	Nime		-	
Corner torque (at V_{gmax} and $\Delta p = 400 \text{ bar})^{(1)}$	I max	Nm	572	795	1144
There are a later to a second line to	T	Lb-Ft	422	586	844
Through-drive torque limit	T _{D lim}	Nm	882	1110	1760
		Lb-Ft	651	819	1298
Input torque limit ^②	-		4.4.0	4.4.0	
With shaft code S	T _{E lim}	Nm	1640	1640	1640
		Lb-Ft	1210	1210	1210
SAE (ANSI B92.1a-1976)	_	Spline	(1 ³ /4"-13T 8/16DP)	(1 ³ /4"-13T 8/16DP)	(1 ³ /4 ["] -13T 8/16DP)
With shaft code T	T _{E lim}	Nm	-	2670	4070
		Lb-Ft	-	1969	3002
SAE (ANSI B92.1a-1976)		Spline	-	(2"-15T 8/16DP)	(21/4"-17T 8/16DP)
With shaft code Z	T _{E lim}	Nm	912	-	-
		Lb-Ft	673	-	-
(DIN 5480)		Spline	(W35x2x30x16x9g)	-	-

^① Theoretical values; efficiencies not considered
 ^② Drive shafts without side load
 ^③ Shaft 'U' is only permissible as the input shaft in the **2nd pump** of a combination pump of the same size

Abbreviations and formulas:

T_D = Max. permissible through drive torque T_E = Max. permissible input torque at the dr T_1 = Torque required for first pump	tive shaft = $\frac{1.59 \cdot V_{g1} \cdot \Delta p_1}{100 \cdot \eta_{mh}}$	(Nm) (Nm) (Nm)
T_2 = Torque required for second pump	$= \frac{1.59 \bullet V_{g2} \bullet \Delta p_2}{100 \bullet \eta_{mh}}$	(Nm)
$\begin{array}{l} V_{g1} = \text{Pump displacement per rev-1}^{\text{st}} \text{ pump} \\ V_{g2} = \text{Pump displacement per rev-2}^{\text{nd}} \text{ pump} \\ \Delta p_1 = \text{Differential pressure-1}^{\text{st}} \text{ pump} \\ \Delta p_2 = \text{Differential pressure-2}^{\text{nd}} \text{ pump} \\ \eta_{\text{mh}} = \text{Mechanical-hydraulic efficiency} \end{array}$		(cm ³) (cm ³) (bar) (bar)

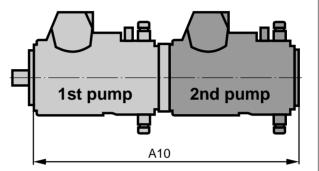
Combination Pump: dimensions in millimeters (inches)

Combination pumps provide two independent closed circuits without the need for splitter gear boxes. When ordering combination pumps the individual model codes should be connected by a '+' sign:

Code: Pump #1 (front pump)

+ Code: Pump #2 (rear pump)

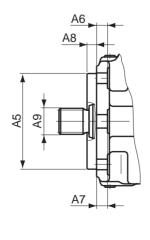
Code example: AA4VG 56 EP1D1/32 R - PTC 52 F073S + AA4VG 56 EP1D1/32 R - PSC 52 F003S

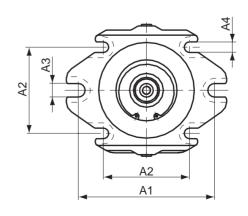

External support for combination pumps of the same frame size is not required, if the dynamic acceleration does not exceed 10g (=98.1 m/s²).

The 4-bolt mounting flange is recommended for size 71 and larger pumps.

Combination pump of the same size

(2nd pump without through drive and with auxiliary pump, F00)

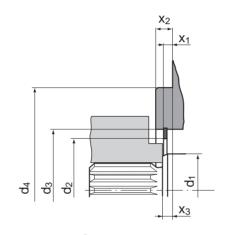

Size	40	56	71	90	125	180	
A10	475.5	521.2	596.4	608.8	669.1	764	
	(18.72)	(20.51)	(23.48)	(23.96)	(26.34)	(30.07)	



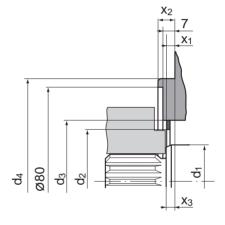
Mounting flanges & shaft options (of single and combination pumps)

											Combination pump of same size		
										Single pump	1st Pump		2nd Pump
Size	Mtg. flange	A1	A2	A3	A4	A5	A6	A7	A8	A9	A9	Through drive	A9
40	SAE C (2-Bolt)	181	-	18	-	ø127	-	15	12.7	S (SAE 11/4")	S (SAE 11/4")	F09/K09	U (SAE 1")
		(7.12)		(0.7)	(ø5.00)		(0.6	(0.50)				
56	SAE C (2-Bolt)	181	-	18	-	ø127	-	18	12.7	S (SAE 11/4")	T (SAE 13/8")	F07/K07	S (SAE 11/4")
		(7.12)		(0.7) (ø5.	00)		(0.7	(0.50)				
71	SAE C (2+4-Bolt)	181	114.6	18	14	ø127	15	15	12.7	S (SAE 11/4")	T (SAE 13/8")	F07/K07	S (SAE 11/4")
		(7.12)	(5.51)	(0.7) (0.5	(ø5.00)	(0.6)	(0.6	(0.50)				
90	SAE D (2+4-Bolt)	228.6	161.4	22	21	ø152.4	17	20	12.7	S (SAE 13/4")	S (SAE 13/4")	F73/K73	Z (W35)
		(9.00)	(6.35)	(0.9) (0.8	(ø6.00)	(0.7)	(0.8	(0.50)				
125	SAE D (2+4-Bolt)	228.6	161.4	22	21	ø152.4	20	20	12.7	S (SAE 13/4")	T (SAE 2")	F69/K69	S (SAE 13/4")
		(9.00)	(6.35)	(0.9) (0.8) (ø6.00)	(0.8)	(0.8	(0.50)				
180	SAE E (4-Bolt)	-	224.5	-	21	ø165.1	22	-	15.9	S (SAE 13/4")	T (SAE 21/4")	F72/K72	S (SAE 13/4")
			(8.83)		(0.8) (ø6.50)	(0.9)		(0.6)				

Mounting Flange



Installation Situation for Coupling Assembly


In order to assure that rotating parts (coupling hub) and fixed parts (housing circlip) do not contact each other the installation situations are described in this data sheet have to be observed. The installation situation depend upon the sizes and the spline.

For SAE spline shaft (shaft S or T) the outer diameter of the coupling hub must be smaller than the inner diameter of the circlip d_3 at the zone of the drive shaft shoulder (measure $X_2 - X_3$).

SAE Spline

Sizes 56-180

Size 40 only

Size	ød1	Ød2 min	ød3	ød4	X 1	X2	X 3
40	40	51.4	63±0.1	127	4.3+0.2	12.7-0.5	
	(1.57)	(2.02)	(2.48±0.003)	(5.00)	(0.16+0.007)	(0.50-0.019)	
56	40	54.4	68±0.1	127	7.0+0.2	12.7-0.5	
	(1.57)	(2.14)	(2.67±0.003)	(5.00)	(0.27+0.007)	(0.50 –0.019)	
71	45	66.5	81±0.1	127	7.0+0.2	12.7-0.5	8 ^{+0.9} -0.6
	(1.77)	(2.61)	(3.18±0.003)	(5.00)	(0.27+0.007)	(0.50-0.019)	
90	50	66.5	81±0.1	152.4	6.8+0.2	12.7-0.5	(0.31 ^{+0.03} _{-0.02})
	(1.96)	(2.61)	(3.18±0.003)	(6.00)	(0.26+0.007)	(0.50 –0.019)	
125	55	76.3	91 ±0.1	152.4	7.0+0.2	12.7-0.5	
	(2.16)	(3.00)	(3.58±0.003)	(6.00)	(0.27+0.007)	(0.50-0.019)	
180	60	88	107±0.1	165.1	7.4+0.2	15.9-0.5	
	(2.36)	(3.46)	(4.21±0.003)	(6.50)	(0.29+0.007)	(0.62–0.019)	

Specifications, descriptions, and illustrative material shown herein were as accurate as known at the time this publication was printed. Rexroth reserves the right to discontinue models or options at any time or to change specifications, materials, or designs without notice and without incurring obligation.

Optional equipment and accessories may add cost to the basic unit, and some options are available only in combination with certain models or other options.

DISTRIBUTED BY:

Mannesmann Rexroth Corporation Rexroth Hydraulics Div., Industrial, 2315 City Line Road, Bethlehem, PA 18017-2131 Tel. (610) 694-8300 Fax: (610) 694-8467 Rexroth Hydraulics Div., Mobile, 1700 Old Mansfield Road, Wooster, OH 44691-0394 Tel. (330) 263-3400 Fax: (330) 263-3333